
Efficient Parallelization of Stochastic Simulation

Algorithm for Chemically Reacting Systems on

the Graphics Processing Unit ∗

Hong Li † Linda Petzold ‡

December 1, 2008

∗This work was supported in part by the U.S. Department of Energy under DOE award No.
DE-FG02-04ER25621, by the National Science Foundation under NSF awards CCF-0428912,
CTS-0205584, CCF-326576, and by the Institute for Collaborative Biotechnologies through
grant DAAD19-03-D004 from the U.S. Army Research Office.

†Department of Computer Science, University of California, Santa Barbara, CA 93106,
U.S.A.

‡Department of Computer Science, Department of Mechanical Engineering, University of
California, Santa Barbara, CA 93106, U.S.A.

1

Proposed running head: Parallelization of SSA on GPU

Author 1: Hong Li

Address: Department of Computer Science,

University of California, Santa Barbara, CA 93106, U.S.A.

Phone number: 805-893-5728 Fax Number: 805-893-5435

Email address: hongli@cs.ucsb.edu

Author 2: Linda Petzold (Corresponding author)

Address: Department of Computer Science,

Department of Mechanical Engineering,

University of California, Santa Barbara, CA 93106, U.S.A.

Phone number: 805-893-5362 Fax number: 805-893-5435

Email address: petzold@engr.ucsb.edu

The special symbols:

\newcommand{\vctr}[1]{\mbox{\boldmath $#1$}}

\newcommand{\timevec}[2]{\vctr{#1}_{#2}}

\newtheorem{example}{\scshape Example}[section]

2

Abstract

The small number of some reactant molecules in biological systems

formed by living cells can result in dynamical behavior which cannot be

captured by the traditional deterministic approaches. In that case, a more

accurate simulation can be obtained with Gillespie’s Stochastic Simulation

Algorithm (SSA). Since for realistic practical biochemical systems, the

simulation by the SSA carries a high computational cost, specifically for

large systems, several formulations have been proposed to increase the

efficiency of this algorithm. In this paper we propose a highly efficient

and scalable formulation of SSA with an optimal static heap structure to

achieve logarithmic computational complexity for the whole simulation.

Keywords: Stochastic, SSA, Chemical Reacting Systems, Parallel, GPU

3

1 Introduction

Chemically reacting systems have traditionally been simulated by solving a set

of coupled ordinary differential equations (ODEs). Although the traditional

deterministic approaches are sufficient for most systems, they fail to capture

the natural stochasticity in some biochemical systems formed by living cells

[Gillespie 1976; 1977; McAdams and Arkin 1997; Arkin et al. 1998], in which

the small population of a few critical reactant species can cause the behavior of

the system to be discrete and stochastic. The dynamics of those systems can be

simulated accurately using the machinery of Markov process theory, specifically

the stochastic simulation algorithm (SSA) of Gillespie [Gillespie 1976; 1977]. For

many realistic biochemical systems the computational cost of simulation by the

SSA can be very high. The original form of the SSA is called the Direct Method

(DM). Much recent work has focused on speeding up the SSA by reformulating

the algorithm [Gibson and Bruck 2000; Cao et al. 2004; McColluma et al. 2005;

Blue et al. 1995; Schulze 2002; Li and Petzold 2006].

Often, the SSA is used to generate large (typically ten thousand to a million)

ensembles of stochastic realizations to approximate probability density functions

of species populations or other output variables. In this case, even the most effi-

cient implementation of the SSA will be very time consuming. Parallel compu-

tation on clusters has been used to speed up the simulation of such ensembles [Li

et al. 2007]. In [Yoshimi et al. 2005], the use of Field Programmable Gate Arrays

(FPGAs) is investigated. However, clusters are still relatively expensive to buy

and maintain, and specialized devices such as FPGAs are difficult to program.

Due to the low cost and high performance processing capabilities of the GPU,

general purpose GPU (GPGPU) computation [GPGPU-Home 2007] has become

an active research field with a wide variety of scientific applications including

fluid dynamics, molecular dynamics, cellular automata, particle systems, neu-

4

ral networks, and computational geometry [GPGPU-Home 2007; Li et al. 2008b;

Owens et al. 2005; McGraw and Nadar 2007; Li et al. 2008a]. Before the NVIDIA

G80 was released, GPU users had to recast their applications into a graphics ap-

plication programming interface (API) such as OpenGL, which is a significant

challenge for non-graphics applications. The Compute Unified Device Architec-

ture (CUDA) release by NVIDIA last year [NVIDIA 2008b] is a technology which

directly enables implementation of parallel programs in the C language using an

API designed for general-purpose computation. In this paper, we will show how

Single Instruction Multiple Data (SIMD) computation can be implemented on

a CUDA-enabled GPU, the NVIDIA GeForce 8800GTX, to efficiently perform

ensemble runs of SSA simulations for chemically reacting systems.

This paper is organized as follows. In Section 2 we briefly review the Stochas-

tic Simulation Algorithm and some basics of parallel computation with the

graphics processing unit. In Section 3 we introduce the efficient paralleliza-

tion of the SSA on the GPU. Simulation results are presented in Section 4, and

in Section 5 we draw some conclusions.

2 Background

2.1 Stochastic Simulation Algorithm

The Stochastic Simulation Algorithm applies to a spatially homogeneous chem-

ically reacting system within a fixed volume at a constant temperature. The

system involves N molecular species {S1, . . ., SN} represented by the dynamical

state vector X(t) = (X1(t), . . . , XN(t)) where Xi(t) is the population of species Si

in the system at time t, and M chemical reaction channels {R1, . . . , RM}. Each

reaction channel Rj is characterized by a propensity function aj and state change

vector νj = {ν1j , . . . , νNj}, where aj(x)dt is the probability, given X(t) = x, that

5

one Rj reaction will occur in the next infinitesimal time interval [t, t + dt), and

νij is the change in the number of species Si due to one Rj reaction.

The Next Reaction Density Function [Gillespie 2001], which is the basis of

SSA, gives the joint probability that reaction Rj will be the next reaction and will

occur in the infinitesimal time interval [t, t + dt), given X(t) = x. By applying

the laws of probability, the joint density function is formulated as follows:

P (τ, j |xt, t) = aj(xt)e
−a0(xt)τ , (1)

where a0(xt) =
∑M

j=1 aj(xt).

Starting from (1), the time τ , given X(t) = x, that the next reaction will fire

at t + τ , is the exponentially distributed random variable with mean 1
a0(x) ,

P (τ |x, t) = a0(xt)e
−a0(xt)τ (τ ≥ 0). (2)

The index j of that firing reaction is the integer random variable with probability

P (j|τ, x, t) =
aj(xt)

a0(xt)
(j = 1,, M). (3)

Thus on each step of the simulation, the random pairs (τ, j) are obtained

based on the standard Monte Carlo inversion generating rules: first we produce

two uniform random numbers r1 and r2 from U(0, 1), the uniform distribution

on [0, 1]. Then τ is given by

τ =
1

a0(xt)
ln

(
1

r1

)
. (4)

6

The index j of the selected reaction is the smallest integer in [1, M] such that

j∑

j′=1

aj′(xt) > r2a0(xt). (5)

Finally, the population vector X is updated by the state change vector ν,

and the simulation is advanced to the next reacting time.

Because SSA must simulate every reaction event, simulation with SSA can

be quite computationally demanding. A number of different formulations of SSA

have been proposed, in an effort to speed up the simulation [Gibson and Bruck

2000; Cao et al. 2004; McColluma et al. 2005; Blue et al. 1995; Schulze 2002; Li

and Petzold 2006]. The most time-consuming step of the SSA is the selection

of the next reaction to fire. The complexity of this step for the Direct Method

is O(M), where M is the number of reactions. To the best of our knowledge,

the fastest known SSA formulation is something we call the Logarithmic Direct

Method (LDM) because its complexity for the critical step is O(logM). The

LDM algorithm comes from the literature on Kinetic Monte Carlo (KMC) algo-

rithms[Schulze 2002]. The SSA is a type of KMC algorithm that is applied to

chemical kinetics. Because of the special structure of the chemical kinetics prob-

lems, it has been possible to put SSA on a solid theoretical foundation. Further

efficiency of the LDM can be achieved by using sparse matrix techniques in the

system state update stage [Li and Petzold 2006]. In our performance compar-

isons, we use the LDM with sparse matrix update. The algorithm is summarized

as follows:

1. Initialization: Initialize the system.

2. Propensity calculation: Calculate the propensity functions ai (i = 1, ..., M),

and save the intermediate data as an ordered sequence of the propensities

subtotalled from 1 to M, while summing all the propensity functions to

7

obtain a0 .

3. Reaction time generation: Generate the firing time of the next reaction.

4. Reaction selection: Select the reaction to fire next with binary search on

the ordered subtotal sequence.

5. System state update: Update the state vector x by νj with sparse matrix

techniques, where j is the index of the current firing reaction. Update the

simulation time.

6. Termination: Go back to stage 2 if the simulation has not reached the

desired final time.

When an ensemble (ten thousand to a million realizations or more) must

be generated, the computation can become intractable even with the best SSA

formulation. Thus we seek to make use of the low-cost, high efficiency GPGPU.

2.2 Using the Graphics Processor Unit as a Data Parallel

Computing Device

Modern Graphics Processor Unit

The Graphics Processing Unit (GPU) is a dedicated graphics card for personal

computers, workstations or video game consoles. Recently, GPUs with general

purpose parallel programming capacities have become available. The GPU has

a highly parallel structure with high memory bandwidth and more transistors

devoted to data processing than to data caching and flow control (compared

with a CPU architecture), as shown in Figure 1 [NVIDIA 2008a]. This makes

the GPGPU a very powerful computing engine. NVIDIA reports that the GPU

architecture is most effective for problems that can be implemented with stream

8

processing and using limited memory. Single Instruction Multiple Data (SIMD),

which involves a large number of totally independent records being processed

by the same sequence of operations simultaneously, is an ideal general purpose

graphics processing unit (GPGPU) application.

DRAMDRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Figure 1:

NVIDIA 8 Series GeForce-based GPU Architecture

NVIDIA corporation claims its graphics processing unit (GPU) as a “second

processor in personal computers” [NVIDIA 2008b], which means that the data

parallel computation intensive part of applications can be off-loaded to the GPU

[NVIDIA 2008a].

We performed our simulations on the NVIDIA 8800 GTX chip with 768MB

RAM. There are 128 stream processors on a 480mm2 surface area of the chip,

divided into 16 clusters of multiprocessors as shown in Figure 2 [NVIDIA 2008a].

Each multiprocessor has 16 KB shared memory which brings data closer to the

ALU. The processors are clocked at 1.35 GHz with dual processing of scalar op-

erations supported. Thus the peak computation rate accessible from the CUDA

is (16 multiprocessors * 8 processors / multiprocessor) * (2 flops / MAD) 1 * (1

MAD / processor-cycle) * 1.35 GHz = 345.6 GFLOP/s. The maximum observed

bandwidth between system and device memory is about 2GB/second. All of the

1A MAD is a multiply-add.

9

benchmarks on the GPU were performed on a single Geforce 8800 GTX GPU

card. Likewise, we use only use a single core of the Intel Core 2 Duo E6700

2.67GHz dual-core processor [PCperspective 2008], which makes the best use of

the memory bandwidth.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant
Cache

Figure 2:

The limited size of the shared memory of each multiprocessor restricts the

range of applications that can make use of this architecture. Maximizing the use

of shared memory makes better use of the arithmetic units. The Compute Unified

Device Architecture (CUDA) Software Development Kit (SDK), supported by

the NVIDIA Geforce 8 Series makes this challenging task easier than previous

graphics APIs.

CUDA: A GPU Software Development Environment

The CUDA provides an essential high-level development environment with stan-

dard C language, resulting in a minimal learning curve for beginners to access the

low-level hardware. Unlike previous graphics application interfaces, the CUDA

10

provides both scatter and gather memory operations for development flexibility.

It also supports fast read and write shared memory to reduce the dependence of

application performance on the DRAM bandwidth [NVIDIA 2008a].

The structure of CUDA computation broadly follows the data-parallel model:

each of the processors executes the same sequence of instructions on different sets

of the data in parallel. The data can be broken into a 1D or 2D grid of blocks,

and each block can be 1D, 2D or 3D and can allow up to 512 threads which can

collaborate through shared memory. Threads within a block can collaborate via

the shared memory. Currently the multiprocessor single-instruction multiple-

thread unit manages threads in warps, which is 32 parallel threads. Threads

in a warp execute the same instructions at a time, thus the branch divergence

in one warp will cause each branch path execute serially on each path. Since

different warps run independently, to fully utilize the GPU, we should try to

make the threads in a warp take the same execution path[NVIDIA 2008a].

In theory, the CPU and GPU can run in parallel. In practice, the severe

memory limitations of the G80 makes this impossible for all but the smallest

problems. The problem is that, if we have two kernels, K1 and K2, one of which

is running on the (single) GPU, then in order to transfer the data needed by K2

into the GPU memory while K1 is simultaneously executing, one would need to

partition the already small GPU device memory into parts. This puts a very

server restriction on the amount of memory available to each kernel.

3 Implementation Details

3.1 Parallelism across the simulations

NVIDIA reported that streaming processing, which allows many applications to

more easily exploit a limited form of parallel processing [Encyclopedia 2008], can

11

run very efficiently on the new GPU architecture. Our focus is on computation of

ensembles of SSA realizations, which is a typical stream processing application.

Ensembles of SSA simulations for chemically reacting systems are very well-

suited for implementation on the GPU through the CUDA. The simulation code

can be put into a single kernel running in parallel on a large set of system stat

vectors X(t). The large set of final stat vectors X(tfinal) will contain the desired

results.

The initial conditions X(0) and the stoichiometric matrix ν originally will be

in the host memory. We must copy them to the device memory by CUDAMem-

cpy in the driver running on the the CPU. We minimize the transfer between

the host and device by using an intermediate data structure on the device and

batch a few small transfers into a big transfer to reduce the overhead for each

transfer. Next, we need to consider the relatively large global memory vs. the

limited-size shared memory. The global memory adjacent to the GPU chip has

higher latency and lower bandwidth than the on-chip shared memory. There is

about 400-600 clock cycle latency to access the global memory vs. 4 clock cycles

to read or write the shared memory. To effectively use the GPU, our simulation

makes as much use of on-chip shared memory as possible. We load X(0) and

the stoichiometric matrix ν from the device memory to the shared memory at

the very beginning of the kernel, process the data (propensity calculation, state

vector update, etc.) in shared memory, and write the result back to the device

memory at the end. Because the same instruction sequence is executed for each

data set, there is a low requirement for flow control. This matches the GPU’s ar-

chitecture. The instruction sequence is performed on a large number of data sets

which do not need to swap out, hence the memory access latency is negligible

compared with the arithmetic calculation.

The CUDA allows each block to contain at most 512 threads, but blocks with

12

the same dimension and size that run the same kernel can be put into a grid of

blocks. Thus the total number of threads for one kernel can be very large. Given

the total number of realizations of SSA to be simulated, the number of threads

per block and the number of blocks must be carefully balanced to maximize the

utilization of computation resources. Otherwise, the it will cause the uncoalesced

addressing which will slow down the simulation. For stochastic simulation, we

can’t use too many threads per block since there is only a limited shared memory

and all system state vectors and propensities have been put in shared memory

for efficient frequent access. Thus the number P of threads per block should

satisfy (N + M) ∗ 4 ∗ P + α < 16K, where N is the number of chemical species,

M is the number of reactions, 4 is the size (in bytes) of an integer/float variable,

16K is the maximum shared memory we can use within one block, and α is the

shared memory used by the random number generator (this is relatively small).

Random Number Generation

Statistical results can only be relied on if the independence of the random number

samples can be guaranteed. Thus generating independent sequence of random

numbers is one of the important issues of implementing simulation for ensembles

of stochastic simulation algorithms in parallel.

Originally we considered pre-generating a large number of random numbers

by the CPU. Since the CPU and GPU can’t communicate in real time in parallel

(the GPU has to stop to get the data from the CPU and then continue the

computation), we can pre-generate a huge number of random numbers and store

them in the shared memory and swap back to the CPU to generate more when

they are used up. Alternatively, we could pre-generate a huge number of random

numbers and put them in the global memory. Both methods will waste too

much time for data access. Furthermore, the Scalable Parallel Random Number

13

Generators Library (SPRNG) [Mascagni 1999; Mascagni and Srinivasan. 2000],

which we use in our StochKit [Li et al. 2007] package for discrete stochastic

simulation because of its excellent statistical properties, cannot be implemented

on the GPU due to its complicated data structure. The only solution appears

to be to implement a simple random number generator on the GPU. Experts

suggest using a mature random number generator instead of inventing a new one,

since it requires great care and extensive testing to evaluate a random number

generator[Brent 1992]. Thus we chose the Mersenne Twister from the literature

in our application [Forums Members 2008].

The Mersenne Twister (MT) was developed by Makoto Matsumoto and

Takuji Nishimura [Matsumoto and Nishimura 1998] in 1997, with initialization

improved in 2002 [Podlozhnyuk 2008]. This method has passed many statistical

randomness tests including the stringent Diehard tests [Forums Members 2008].

The fully tested MT random number generator can efficiently generate high

quality, long period random sequences with high order of dimensional equidis-

tribution. Another good property of the MT is its efficient use of memory. Thus

it is very suitable for our application. In our implementation we modified Eric

Mills’s multithreaded C implementation [Forums Members 2008]. Since our ap-

plication requires a huge number of random numbers even for one realization of

a simple model, we use the shared memory for random number generation to

minimize the data launching and accessing time.

4 Parallel Simulation Performance

The performance of the parallel simulation is limited by the number of proces-

sors available for the computation, the workload of the available processors, and

the communication and synchronization costs. It is important to note that more

14

processors does not necessarily mean better performance. Our simulations were

run on a single NVIDIA GeForce 8800GTX GPU installed on a personal worksta-

tion. The benchmarking on the GPU has been done on a configuration consisting

of the host workstation and one GPU card. Likewise the benchmarking on the

CPU was performed on a single core. For the benchmarking on the CPU, we

compiled the code without and with the SSE extension, where we generate the

SSE code automatically via the compiler without hand-coded assembly. In our

tests, both the GPU and the CPU simulations were done in single precision,

because the G80 supports only single precision. One might legitimately wonder

to what extent this impacts the accuracy of the computation. To this end, we

performed both experiments in double precision on the CPU, and found that the

difference between the single precision and the double precision results was not

statistically significant.

Example 4.1 Decay Dimerization Model

The decay dimerization model [Gillespie 2001] involves three reacting species

S1, S2, S3 and four reaction channels R1, R2, R3, R4

S1
c1→ 0

S1 + S1
c3⇀↽
c2

S2

S2
c4→ S3.

(6)

We used the reaction rate constants from [Gillespie 2001],

c1 = 1, c2 = 0.002, c3 = 0.5, c4 = 0.04, (7)

and the initial conditions

X1 = 104, X2 = X3 = 0. (8)

15

The simulation performance has been extraordinary, as shown in Table 1.

For 30 000 realizations, the parallel (GPU) simulation is almost 200 times faster

than the sequential simulation on the host computer. 2

In general, as the size of the system increases, the speed-up of the GPU

decreases because of the limited shared memory. However, most biochemical

systems are loosely coupled, thus we can make use of sparse matrix techniques

to reduce the memory requirements. Here we use the Yale Sparse Matrix For-

mat[Encyclopedia 2008]. Very large biochemical systems arise when the model

takes into account spatial inhomogeneity. The SSA is based on the assumption

of a spatially homogeneous system. However, by discretizing the space into cells

and introducing variables associated to the population of the species in each

cell, the SSA can also be applied to spatially inhomogeneous systems. Here we

construct a simple example to illustrate the power of the GPU for this type of

problem.

Example 4.2 Spatially Inhomogeneous Model

This model was introduced by Shnerb et al. [Shnerb et al. 2000] to illustrate

the difference between the continuous deterministic approach and the discrete

stochastic approach. For convenience, we simplified the model slightly by fixing

the position of one species. The model is defined on a 2-dimensional grid. Species

A is initially located at a single grid point and moves randomly with a given

diffusion coefficient. Species B is initially located in a randomly-chosen area of

adjacent grid points, away from the border regions. The model is simulated over

a fixed time period, to find the spatial distribution of A. Two types of reactions

are involved. Species A decays with a constant rate µ, and divides with rate λ

2We note that the compiler generated SSE code did not yield much improvement. This
may be due to factors such as the high degree of data dependence from one step to another,
unexpected loop exits involved in the determination of which reaction will fire first, and non-
sequential data accesses due to the sparse structure of the network stoichiometric matrix.

16

when it meets the catalyst B. We simulated the model with n = 8, 10, 16, 20. To

each grid cell (labeled (i, j)), we assign variables Ai,j for species A and Bi,j for

species B. The reactions are listed as follows

Diffusion of A: Ai,j −→ Ai±1,j±1,

Decay of A: Ai,j −→ ∅,

Division of A: Bi,j + Ai,j −→ Bi,j + 2Ai,j

(9)

The diffusion rate for A is µ = 0.5. The decay rate for A is 0.1. The division

rate (when A reaches the region occupied by B) is λ = 0.0025. The initial states

are set so that one cell contains a population of 100 of species A, 4 cells contain

a population of 100 of species B, and the remainder of the cells contain no A or

B respectively.

Ai,j =






100, i = 10, j = 10,

0, else.

Bi,j =






100, selected i, j,

0, else.

(10)

To use the shared memory efficiently, in addition to using the sparse matrix

technique we group the M reactions according to the type of the reaction. We

first determine which group will fire next, and then determine at which grid point

that type of reaction will fire. By doing this, we can avoid saving the propensities

at each grid point, which is what is normally done in SSA [Cao et al. 2004;

Li and Petzold 2006]. Instead, we keep track only of the number of species A

at each grid point. By doing this, we can dramatically reduce the number of

operations consumed in the calculation of the propensities, as well as the use of

the shared memory and global memory. The disadvantage is that we must update

the propensities for each group very frequently. We measured the CPU time for

40 000 realizations. The timing results for different grids are shown in Table

17

2. The parallel (GPU) simulation is about 200 times faster than the sequential

simulation on the host computer.

For these computations, we have been able to store all frequently-used reaction

rates in shared memory. Because the shared memory is limited, it is not possible

to store all of the data for a large grid like 100 ∗ 100 in shared memory. Addi-

tionally, we can’t run too many realizations for a large grid at the same time,

because the device memory of the GeForce 8800 GTX is also limited (768M).

For 5 000 realizations of the 100 ∗ 100 grid, the parallel simulation is about 50

times faster than the sequential one.

5 Conclusions

The SSA is the workhorse algorithm for discrete stochastic simulation in systems

biology. Even the most efficient implementations of the SSA can be very time-

consuming. Often the SSA is used to generate ensembles (typically ten thousand

to a million) of stochastic simulations. The current generation of GPUs appears

to be very well-suited for this purpose. On the two model problems we tested,

we observed speedups about 200 times for the GPU, over the time to compute

on the host workstation. With this impressive performance improvement, in

one day we can generate data which would require more than six months of

computation with the sequential code.

This technology is not quite ready for the novice user. Programs must be

written to be memory efficient, with the GPU architecture in mind.

18

List of Captions:

Figure 1: CPU vs. GPU arichitecture.

Figure 2: Hardware Model.

19

References

Arkin, A., J. Ross, and H. McAdams (1998). Stochastic kinetic analysis of

developmental pathway bifurcation in phage λ-infected E. Coli cells. Genetics

149, 1633–1648.

Blue, J., I. Beichl, and F. Sullivan (1995). Faster Monte Carlo simulations.

Physical Rev. E 51, 867–868.

Brent, R. P. (1992). Report TR-CS-92-02 .

Cao, Y., H. Li, and L. Petzold (2004). Efficient formulation of the stochastic

simulation algorithm for chemically reacting systems. J. Phys. Chem. 121 (9),

4059–4067.

Encyclopedia, T. F. (2008). Wikipedia. http://en.wikipedia.org.

Forums Members, N. F. (2008). NVIDIA forums. http://forums.nvidia.com.

Gibson, M. and J. Bruck (2000). Efficient exact stochastic simulation of chemical

systems with many species and many channels. J. Phys. Chem. 105, 1876–

1889.

Gillespie, D. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434.

Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem. 81, 2340–2361.

Gillespie, D. (2001). Approximate accelerated stochastic simulation of chemically

reacting systems. J. Chem. Phys. 115 (4), 1716–1733.

GPGPU-Home (2007). GPGPU homepage. http://www.gpgpu.org/.

20

Li, H., Y. Cao, L. Petzold, and D. Gillespie (2007). Algorithms and software for

stochastic simulation of biochemical reacting systems. Biotechnology Progress.

24, 56–61.

Li, H., A. Kolpas, L. Petzold, and J. Moehlis (2008a). Efficient parallel simulation

of an individual-based fish schooling model on a graphics processing unit. In

Grace Hopper Celebration of Women in Computing.

Li, H., A. Kolpas, L. Petzold, and J. Moehlis (2008b). Concurrency and Com-

putation: Practice and Experience . to appear.

Li, H. and L. Petzold (2006). Logarithmic Direct Method for discrete

stochastic simulation of chemically reacting systems. Technical report, De-

partment of Computer Science, University of California, Santa Barbara.

http://www.engr.ucsb.edu/∼cse.

Mascagni, M. (1999). SPRNG: A scalable library for pseudorandom number gen-

eration. In Proceedings of the Ninth SIAM Conference on Parallel Processing

for Scientific Computing, San Antonio, Texas.

Mascagni, M. and A. Srinivasan. (2000). SPRNG: A scalable library for pseudo-

random number generation. In ACM Transactions on Mathematical Software,

Volume 26, pp. 436–461.

Matsumoto, M. and T. Nishimura (1998). Mersenne Twister: a 623-

dimensionally equidistributed uniform pseudo-random number generator .

ACM Transactions on Modeling and Computer Simulation (TOMACS) 8, 3–

30.

McAdams, H. and A. Arkin (1997). Stochastic mechanisms in gene expression.

Proc. Natl. Acad. Sci. USA 94, 814–819.

21

McColluma, J. M., G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F. Sam-

atova (Feb. 2005). The sorting direct method for stochastic simulation of

biochemical systems with varying reaction execution behavior. J. Comput.

Biol. Chem. 30, 39–49.

McGraw, T. and M. Nadar (2007). Stochastic DT-MRI connectivity mapping on

the gpu. IEEE Transactions on Visualization and Computer Graphics 13 (6),

1504–1511.

NVIDIA (2008a). NVIDIA CUDA Compute Unified Device Architecture Pro-

gramming Guide. http://developer.download.nvidia.com.

NVIDIA (2008b). NVIDIA homepage. http://www.nvidia.com.

Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn,

and T. J. Purcell (2005, August). A survey of general-purpose computation

on graphics hardware. In Eurographics 2005, State of the Art Reports, pp.

21–51.

PCperspective (2008). PCperspective. http://www.pcper.com.

Podlozhnyuk, V. (2008). Mersenne Twister. http://developer.download.nvidia.

com.

Schulze, T. P. (2002). Kinetic Monte Carlo simulations with minimal searching.

Physical Review E 65 (3), 036704.

Shnerb, N., Y. Louzoun, E. Bettelheim, and S. Solomon (2000). The Importance

of Being Discrete - Life Always Wins on the Surface Proc. Proc. Natl. Acad.

Sci. USA 97, 10332.

Yoshimi, M., Y. Osana, Y. lwaoka, A. Funahashi, N-Hiroi, Y. Shibata,

N. lwanaga, H. Kitano, and H. Amano (2005). The design of scalable stochas-

22

tic biochemical simulator on FPGA. Proc. of I. C. on Field Programmable

Technologies (FPT2005) , 139–140.

23

List of Tables:

Table 1: Performance for Dimer Decay model

T*B R ST STsse PT GGPU

16*16 256 11.6065 11.3201 0.6354 4.3968

16*32 512 23.2192 22.9833 0.6655 8.3978

32*32 1024 46.4077 46.1381 0.6789 16.4556

64*32 2048 92.8379 92.0769 0.7354 30.3889

128*32 4096 185.5898 184.9292 0.9984 44.7435

256*32 8192 371.2942 370.8793 1.8462 48.4103

256*64 16 384 742.8669 742.1035 3.6357 49.1821

256*96 24 578 1 114.1775 1 113.7827 5.2921 50.6778

256*128 32 768 1 477.8368 1 476.4513 6.8798 51.7059

This table shows the performance for Dimer Decay model, where T ∗ B is the
thread number ∗ block number, R is the number of realizations, ST is the
sequential simulation time, STsse is the simulation time on the CPU with the
SSE extension, PT is the parallel simulation time, and GGPU is the GFLOPS
on the GPU.

24

Table 2: Performance for the Spatially Inhomogeneous model

S N M ST STsse PT GGPU

8*8 68 388 127.2968 118.3672 0.5068 81.2168

10*10 104 604 204.0062 192.3844 0.8563 77.0137

16*16 260 1 536 511.4982 487.9421 2.3386 70.7090

20*20 404 2 404 785.6463 757.4982 3.8153 66.5706

This table shows the performance for the Spatially Inhomogeneous model, where
S is the system size, N is the number of species, M is the number of reactions,
ST is the sequential simulation time, STsse is the simulation time on the CPU
with the SSE extension, PT is the parallel simulation time, and GGPU is the
GFLOPS on the GPU.

25

